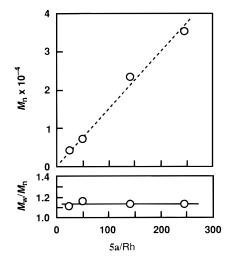
An Efficient Rhodium(I) Initiator for Stereospecific Living Polymerization of Phenylacetylenes

Yasuhisa Kishimoto, Tatsuya Miyatake, Takao Ikariya, and Ryoji Noyori*,†


ERATO Molecular Catalysis Project, Research Development Corporation of Japan, 1247 Yachigusa, Yakusa-cho, Toyota 470-03, Japan

Received February 5, 1996 Revised Manuscript Received April 24, 1996

Living polymerization of monosubstituted acetylenes has been extensively investigated, because the resulting stereoregular polymers with a controlled molecular weight are expected to have unique physical properties. Recently, we have observed the polymerization of phenylacetylenes initiated by $Rh(C \equiv CC_6H_5)(nbd)-[P(C_6H_5)_3]_2$ (1, nbd = 2,5-norbornadiene).² Although

this Rh complex acts as an excellent initiator, the reaction rate and the initiation efficiency (I_{eff}) can still be improved. Since the dissociation of one of the two $P(C_6H_5)_3$ ligands from the pentacoordinate complex 1, giving an active complex $Rh(C \equiv CC_6H_5)(nbd)[P(C_6H_5)_3]$ (2), is a prerequisite for the initiation, the presence of the second $P(C_6H_5)_3$ ligand is unfavorable from the reactivity point of view. Such a consideration prompted us to search for tetracoordinate Rh(I) complexes which serve as more reactive initiators. We now report a new Rh system that is easily prepared and displays a much higher reaction rate and I_{eff} .

Polymerization of phenylacetylene (5a) occurs rapidly at room temperature in THF containing [Rh(OCH₃)- $(nbd)_{2}$ (3), $\tilde{P}(C_6H_5)_3$, and 4-(dimethylamino)pyridine (DMAP) (Rh:phosphine:amine = 1:1:10) with a 5a/Rhfeed ratio of 50:1. Treatment of the resultant deep red solution with acetic acid followed by a large amount of methanol produced quantitatively poly(phenylacetylene) (PPA) as a yellow fine powder, which has a numberaverage molecular weight, $M_{\rm n}$, of 6900 and a polydispersity, $M_{\rm w}/M_{\rm n}$, of 1.11 determined by GPC. The polymer has the regular head-tail cis-transoidal structure in the main chain, as determined by ¹H NMR spectroscopy (CDCl₃, δ 5.83, sharp singlet, vinyl proton).² No proton signals arising from the methoxyl group were observed in the ¹H NMR spectrum of an oligomer ($M_{\rm n}=3400,\ M_{\rm w}/M_{\rm n}=1.10$) obtained from

Figure 1. M_n and M_w/M_n values of poly(phenylacetylene)s determined by GPC as a function of the initial **5a**/Rh feed ratio.

DC=CC₆H₅. A phenylacetylene derivative, **5b**, with a long-chain substituent on the phenyl ring provides a stereoregulated polymer with an $M_{\rm n}$ of 16 600 and an $M_{\rm w}/M_{\rm n}$ of 1.20 in 91% yield.

The reaction with the new Rh initiator proceeding homogeneously in THF is 3-4 times faster than with **1**. The polymerization has proved to be living in nature. As shown in Figure 1, the M_n of the products obtained with 100% conversion of the monomer increased proportionally from the initial **5a**/Rh feed ratio up to $3.5 \times$ 10⁴ with a 250:1 feed ratio, in which the initial concentration of ${\bf 5a}$ was kept constant. The $M_{\rm w}/M_{\rm n}$ value of the polymer remained within a narrow range, 1.11-1.15. The $M_{\rm n}$ values indicate that the $I_{\rm eff}$ value of the initiating system, 72%, is approximately doubled compared with the value obtained with 1, 37%.2 A higher $M_{\rm n}$ value, up to 1.9×10^5 , can be attained by increasing the 5a/Rh feed ratio to 1000:1. The living character of the reaction also allows block copolymerization of different phenylacetylenes. Thus, the active PPA with an $M_{\rm n}$ of 8900 and an $M_{\rm w}/M_{\rm n}$ of 1.12, formed from **5a** and the initiator 3 with a 5a/Rh ratio of 50:1, further promotes polymerization of *p*-methoxyphenylacetylene to give an AB type block copolymer with an M_n value of 23 600 and an $M_{\rm w}/M_{\rm n}$ value of 1.28.⁴ A clean shift of the GPC peak to a higher molecular weight region confirmed the nearly quantitative initiation of the second polymerization.

The real initiator of the polymerization is a tetracoordinate Rh complex $\mathbf{2}$. A combined system consisting of Rh complex $\mathbf{3}$, $P(C_6H_5)_3$, and DMAP (Rh:phosphine:amine = 1:1:10) served as the most active initiator for the living polymerization (entry 1 in Table 1). The reaction rate was decreased markedly by increasing the ratio of $P(C_6H_5)_3$ to $\mathbf{3}$ (entries 2 and 3). The $^{31}P\{^1H\}$ NMR spectrum of a mixture of complex $\mathbf{3}$, $P(C_6H_5)_3$, and

[†] Permanent address: Department of Chemistry, Nagoya University, Chikusa, Nagoya 464-01, Japan.

Table 1. Polymerization of Phenylacetylene with the [Rh(OCH₃)(nbd)]₂/P(C₆H₅)₃/DMAP System^a

	$P(C_6H_5)_3/$	DMAP/	time	$conv^b$	prod	luct
entry	Rh	Rh	(min)	(%)	$M_{\rm n}^c$	$M_{\rm w}/M_{\rm n}^{c}$
1	1.0	10	10	90	6900	1.11
2	1.2	10	12	100	7100	1.17
3	2.0	10	20	98	8100	1.15
4	0	0	6	99	573200^{d}	1.55^d
5	0	10	10	100	15100	1.38
6	2.0	0	40	100	13800	1.33

^a Conditions: initial [5a] = 300 mM; initial [Rh] = 6 mM; in THF at 25 °C. The reaction was initiated by adding a THF solution of the monomer to the Rh complex solution containing additives. ^b Determined by GC analysis of the reaction mixture. c Determined by GPC based on polystyrene standards. d For THFsoluble part.

5a (Rh:phosphine:**5a** = 1:1:5) in THF- d_8 at -50 °C (δ 34.3 ppm, doublet, $J_{P-Rh} = 176$ Hz) showed the formation of a tetracoordinate Rh complex 2.5,6 Unfortunately, this was unisolable due to instability. By increasing the temperature to 25 °C, complex 2 was converted to an isolable living oligomer bearing a tetracoordinate Rh center, which exhibited a 31P NMR signal in THF- d_8 at δ 19.2 ppm with $J_{P-Rh} = 176$ Hz.² Thus, the reaction proceeds through the same initiation and propagation mechanism as the pentacoordinate complex 1.

Both P(C₆H₅)₃ and DMAP are crucial additives for the living nature of this polymerization. The presence of only $P(C_6H_5)_3$ or DMAP significantly improved the I_{eff} but not the polydispersity, whereas the reaction without these two additives formed a very high molecular weight polymer with an $M_{\rm n}$ of 5.7 \times 10⁵ and an $M_{\rm w}/M_{\rm n}$ of 1.55 in addition to THF-insoluble product, indicating that the *I*_{eff} value of the initiator is very low (entries 4−6 in Table 1). Norbornadiene, probably due to its capability of stabilizing active Rh species,^{7–9} is the best diene ligand to attain living polymerization. [Rh(OCH₃)(cod)]₂¹⁰ (cod = 1,5-cyclooctadiene) combined with $P(C_6H_5)_3$ and DMAP does not initiate living polymerization, though it produces a high molecular weight PPA with an $M_{\rm n}$ of 82 500 and an $M_{\rm w}/M_{\rm n}$ of 3.77 (Table 2). The isostructured dinuclear complex, [RhCl(nbd)]₂ (4), in the presence of N(C₂H₅)₃ has an extremely high activity but low initiation efficiency. 9,11 Addition of P(C₆H₅)₃ completely suppressed the polymerization as shown in Table 2. The methoxyl group in complex 3 is more easily replaced with an alkynyl group than the chloro ligand under the present reaction conditions. This trend probably reflects the relative p K_a values of HCl (-2.2) and CH₃OH (15.5).

Thus, this new initiating system effectively produces stereoregular PPAs with a narrow molecular weight distribution. The Rh complex system promotes the polymerization rapidly with a high initiation efficiency. Most conveniently, the reaction of 5a can be conducted using an initiator generated in situ in THF from commercially available 4, NaOCH₃ (28 wt % CH₃OH solution), P(C₆H₅)₃, and DMAP (Rh:NaOCH₃:phosphine: amine = 1:1.2:1:10) to give a yellow polymer with an

Table 2. Polymerization of Phenylacetylene with Various Rhodium Complexes

		time	$conv^b$	product	
initiator system	Rh:P	(min)	(%)	$M_{\rm n}^c$	$M_{\rm w}/M_{\rm n}c$
$\frac{1}{3} + P(C_6H_5)_3$	1:1.2	12	100	7100	1.17
$[Rh(OCH_3)(cod)]_2 +$	1:2	90	100	82500	3.77^{d}
$P(C_6H_5)_3$					
1^e		30	97	13400	1.29
$4 + P(C_6H_5)_3$	1:1.2	120	0.2		
$4 + NaOCH_3 + P(C_6H_5)_3^f$	1:1	30	100	11000	1.20

^a Conditions: initial [5a] = 300 mM, Rh:DMAP:5a = 1:10:50, in THF at 25 °C. The reaction was initiated by adding a THF solution of the monomer to the Rh complex solution containing additives. ^b Determined by GC analysis of the reaction mixture. ^c Determined by GPC based on polystyrene standards. ^d Measured only for THF-soluble fraction. e Reference 2. fRh:NaOCH3:P(C6H5)3 = 1:1.2:1.

 $M_{\rm n}$ of 11 000 and an $M_{\rm w}/M_{\rm n}$ of 1.20 in a quantitative yield (Table 2).

Acknowledgment. We wish to thank Miss Y. Kusano of the ERATO Project for helpful experimental assistance.

References and Notes

- (1) (a) Nakano, M.; Masuda, T.; Higashimura, T. Macromolecules 1994, 27, 1344–1348. (b) Schrock, R. R.; Luo, S.; Zanetti, N. C.; Fox, H. H. Organometallics 1994, 13, 3396-3398. (c) Buchmeiser, M.; Schrock, R. R. Macromolecules **1995**, 28, 6642-6649
- (2) Kishimoto, Y.; Eckerle, P.; Miyatake, T.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc. **1994**, 116, 12131–12132. Connelly, N. G.; Loyns, A. C.; Fernandez, M. J.; Modrego,
- J.; Oro, L. A. *J. Chem. Soc., Dalton Trans.* **1989**, 683–687.
- (4) ^{1}H NMR (CD₂Cl₂, TMS as internal standard): δ 3.57 (s, CH_3O , 3H), 5.75 (s, olefinic proton, 1H), 5.83 (s, olefinic proton, 1H), 6.47 (br d, $CH_3OC_6H_4$, 2H), 6.64 (m, $CH_3OC_6H_4$), $CH_3OC_6H_4$, $CH_3OC_6H_4$ 2H), 6.67 (m, C_6H_5 , 2H), 6.93–6.95 (m, C_6H_5 , 3H). Similarly, a homopolymer with an $M_{\rm n}$ of 15 800 and an $M_{\rm w}/M_{\rm n}$ of 1.28 was obtained using 5a and the active polymer with an M_n of 7700 and an $M_{\rm w}/M_{\rm n}$ of 1.15. ¹H NMR at -50 °C (THF- d_8 , TMS): δ 1.30 (d, C H_2 of nbd,
- 1H), 1.47 (d, CH₂ of nbd, 1H), 3.44 (br s, CH=CH of nbd, 2H), 3.74 (br s, CH of nbd, 2H), 5.49 (br s, CH=CH of nbd, 2H), 6.83-7.01 (m, $C \equiv CC_6H_5$, 5H), 7.05-7.80 (m, $P(C_6H_5)_3$,
- (a) Pregosin, P. S. In Phosphorus-31 NMR Spectroscopy in Stereochemical Analysis; Verkade, J. G., Quin, L. D., Eds.; VCH: Deerfield Beach, FL, 1987; pp 465–530. (b) Smith, R. T.; Ungar, R. K.; Sanderson, L. J.; Baird, M. C. *Organometallics* **1983**, *2*, 1138–1144.
- (7) Kishimoto, Y.; Itou, M.; Miyatake, T.; Ikariya, T.; Noyori, R. Macromolecules 1995, 28, 6662-6666.
- (a) Furlani, A.; Licoccia, S.; Russo, M. V.; Camus, A.; Marsich, N. J. Polym. Sci., Part A.: Polym. Chem. 1986, 24, 991-1005. (b) Furlani, A.; Napoletano, C.; Russo, M. V.; Camus, A.; Marsich, N. J. Polym. Sci., Polym. Chem. 1989,
- (9) Tabata, M.; Yang, W.; Yokota, K. Polym. J. 1990, 22, 1105-
- (10) Uson, R.; Oro, L. A.; Cabeza, J. A. Inorg. Synth. 1985, 23, 126-130.
- (a) Yashima, E.; Huang, S.; Matsushima, T.; Okamoto, Y. Macromolecules 1995, 28, 4184-4193. (b) Yashima, E.; Matsushima, T.; Okamoto, Y. J. Am. Chem. Soc. 1995, 117, 11596-11597.

MA960180Q